

Carnegie Mellon University

Text2PDE: Latent Diffusion Models for Accessible Physics Simulation

Anthony Zhou, Zijie Li, Amir Barati Farimani Department of Mechanical Engineering Carnegie Mellon University

Michael Schneier, John R. Buchanan Jr. Naval Nuclear Laboratory

How does this work fit into the field?

Neural surrogates have come far: can we envision **new ways** of using physics simulators?

African elephant

Coral Reef

Sandbar

Sorrel horse

Class-conditioned image generation (PixelCNN, 2017)

A. van den Oord, et. al. Conditional Image Generation with PixelCNN Decoders.

How does this work fit into the field?

Neural surrogates have come far: can we envision **new ways** of using physics simulators?

Impact of image generation models is largely due to the **accessibility** of text prompting.

A. Ramesh, et. al. Hierarchical Text-Conditional Image Generation with CLIP Latents.

What are the criteria for text-based physics simulators?

Main differences w/ image generation:

- Accuracy: Predicted physics must be physically consistent/stable
- Unstructured data: Physics naturally benefits from areas of refinement

T. Pfaff, et. al. Learning mesh-based simulation with Graph Networks. Phillip Lippe, Microsoft Al4Science, https://drive.google.com/file/d/1Qk7hX1InUmFwr9wk0HuWmB-OJ9llbAMG/view

Carnegie Mellon University

How can generative modeling reduce error propagation?

$$p(\mathbf{u}|\mathbf{u}^0, B[\mathbf{u}]) \approx p_{\theta}(\mathbf{u}|\mathbf{u}^0, B[\mathbf{u}]) \qquad \mathbf{u} \in \mathbb{R}^{T \times M \times d_p}$$

Approximate the conditional probability distribution of **all timesteps** at once.

Challenge: Distribution of all possible solutions is extremely high dimensional (128×128 grid, 48 timesteps, 3 channels = ~ 2 million DoFs)

- Diffusion models have high capacity to model complex distributions
- Use a latent space to make training/inference tractable

Latent Diffusion can be an effective model choice to address temporal accuracy

How do we generate solutions at arbitrary discretization?

Perform diffusion on a regular latent space, use autoencoder to map from mesh and grid spaces.

Can we use different conditioning modalities?

Physics

Text

"Fluid passes over a cylinder with a radius of 4.97 and position: 0.35, 0.14. Fluid enters with a velocity of 0.20. The Reynolds number is 190."

Need to make a captioned dataset

Carnegie Mellon University

Bringing it All Together

Recap of main features:

- Diffusing all timesteps at once in a latent space
- Using a mesh autoencoder to adapt to arbitrary discretizations
- Allow conditioning on either text or physics modalities

Cylinder Flow Results

Model	Params	Tflops	L2 Loss
GINO MGN OFormer	72M 101M 131M	0.73 32.16 17.34	0.2445 0.2617 0.3386
LDM _S -FF LDM _M -FF LDM _S -Text	198M 667M 313M	0.81 1.16 0.83	0.3386 0.1522 0.1309 0.1796

- LDMs can be very **efficient** from using a latent space
- LDMs can be **accurate** from using spatio-temporal prediction
- Text-conditioning can be accurate in constrained setups

Generative vs. Autoregressive Rollout Accuracy

LDMs are able to have around **constant** temporal error whereas autoregressive models **accumulate** error

Carnegie Mellon University

3D Turbulence Results

Model	Params	Tflops	L2 Loss	D_{TKE}
FNO	1.02B	1.62	0.862	6.524
FactFormer	41.4M	53.8	0.795	6.022
Dil-Resnet	24.8M	249	0.707	6.153
LDM-FF	2.72B	9.78	0.602	5.630
LDM-Text	2.73B	9.43	0.693	5.653

- LDMs have some scaling ability to more complex systems
- Many details are lost, however, statistics can be captured

Thank you for listening!

Paper: https://arxiv.org/abs/2410.01153

Code: <u>https://github.com/anthonyzhou-1/ldm_pdes</u>

