Neural Functional: Learning Function to Scalar Maps
for Neural PDE Surrogates

Anthony Zhou, Amir Barati Farimani, 6/20/2025

Motivation - Accelerating Physics Simulation

HIV Capsid Liquid Rocket Engine

64 Million Atoms 350 Million Cells

3880 GPU Nodes 4000 CPU Nodes

~130 days of simulation ~14 days of simulation

Physics simulation allows us to understand and design for the worlo

60x Analysis Timelines at Boeing
(47 4 Years
/07 3 Years
777 <1 Year

Wings Tested

CFD runs

1965 2000

Faster simulations can accelerate scientific discovery and engineering progress

httos://www.nas.nasa.gov/SC14/demos/demo20.html, Perilla, J., Schulten, K. Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations. Nat Commun 8, 15959 (2017). https://doi.org/10.1038/ncomms 15959
Forrester T. Johnson, Edward N. Tinoco, N. Jong Yu, Thirty years of development and application of CFD at Boeing Commercial Airplanes, Seattle, Computers & Fluids, Volume 34, Issue 10, 2005, Pages 1115-1151, ISSN 0045-7930, https://doi.org/10.1016/j.compfluid.2004.06.005

Technical Motivation - Physical Constraints in PDE Surrogates

 Neural PDE surrogates make purely data-driven predictions

* Predictions usually become unstable due to lack of physical grounding

 More efficient: Inductive biases can lead to faster training and fewer

oarameters

* More stable: Ensure predictions are physically consistent and obey

Known principles

* More generalizable: Different systems can have the same physical priors

Problem

Physical Grounding

2D Kolmogorov Flow

MSE error under rollouts

107! 5
| w=== Model history_1
10-2 4 Regime 1
] Regime 2
Regime 3

102

Numerical Simulation

Small data

10-1 10° 10!
Time (in seconds)

Neural Surrogate

Some data Big data

>

Lots of physics

Phillip Lippe, Microsoft AldScience, https://drive.google.com/file/d/1QK7hX T INUmFwrOwkOHUWMB-OJ9llbAMGAview, Kamiadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Physics-informed machine learning. Nat Rev Phys 3, 422-440 (2021). https://doi.org/10.1038/s42254-021-00314-5

Some physics No physics

https://doi.org/10.1038/s42254-021-00314-5

What are prior methods for embedding physical priors?

Physics-Informed Losses Equivariant/Invariant NNs

* Degenerate for complex systems * Challenging to design/implement \Subset

A

e (Challenging to optimize in practice e \Work well for targeted systems
Hamiltonian NNs

. d :
P(u,a) =0, inDCR e Only shown for simple,
u=g, ndD particle systems
(| o0 — |
L cau)=”77(au +a“u 9D —
s Up y Ug 0l6D — g
pd L2(D) L2(0D)
Lz error in u v.s. wall time Ground truth Baseline NN Hamiltonian NN
10' 1 PetlBM PINN - @ o O~
s =D | e f =2 "/,'/'l \\ ,,/,’_. “\ ,,’ “\
| =8 =8 o \ 1/ R 1 \
107" 1 % t=32 b= 32 ' : v - ' !
é x \\ ,/’ \\\\ e ,I \\ I’
i‘ 1077 - >|< .\ x\\/.; ° - . .
X % Rl T
i % Tesael Teeell
1075 - S RSV bl T
~——a ~-— =X
~See_ ~——
s (e) SENO, t = 10h (g) FNO, t = 10h How do we extend these to PDE systems?
10" 10 10° 10° 10* 10°

Wall time (seconds)

Chuang, P.-Y., Barba, L.A.: Experience report of physics-informed neural networks in fluid simulations: pitfalls and frustration. arXiv preprint arXiv:2205.14249 (2022); https://greydanus.github.io/2019/05/156/hamiltonian-nns/
Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik Kashinath, Anima Anandkumar, Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere, https://arxiv.org/abs/2306.03838

https://arxiv.org/abs/2306.03838

Background - What is Hamiltonian Mechanics”

Double Pendulum

Hamiltonian Mechanics is a way of interpreting/deriving physics

Why does the world evolve in the way it does”?
Newton: Physics occurs as a result of forces (Newton's Laws)

Lagrange/Hamilton: Physics occurs because it minimizes the universe’s action

Newtonian Mechanics: Write force balance and simplify Hamiltonian Mechanics: Write total energy and minimize
milq (01 cos 01 — 9% sin 91) = —T1sinf; + T5sinf,

) . : OH

—maly (01 sin 01 + 0% cos 91) = —Ticosb; +Tcosby +mig I ‘mzlgpa F (ma 4 mz)lfpg2 2mal1lapg, pg, cos(01 — 02) 0; = e

1 = ,

2myl3l2 [ml + mo sin? (6, 92)] ‘
mo (llél COS 91 — llef sin 91 + lgég COS 91 — lzﬁg sin 92) = —T2 sin 92 . — %
(my + m3)gly cos @) — magls cos B, Pe, EY)

—T5 cos by + mog.

—Mmo (llél sin 61 + l19% cos By + lzéQ sin 09 + 120% COS 92)

... plug and chug Minima found with Hamilton’s Equations of Motion

A simpler and more universal framework for physics

https://www.phys.Isu.edu/faculty/gonzalez/Teaching/Phys7221/DoublePendulum. pdf

How Is Hamiltonian Mechanics useful for learning physics®?

Original problem: Neural networks lack physical grounding.

Solution (HNNSs): Apply neural networks in a Hamiltonian framework.

Recall: Hamiltonian mechanics relies on an energy and its derivatives

In Machine Learning: Learn H with neural network, find derivatives w/ autograd

dq _ dp _ OH Define Hamiltonian (H); Update position and momentum E———
dt dt oq by differentiating the Hamiltonian @ — How o data
- -» = in-graph gradient
\\\\\\\\ O = scalar
-------- !— _—_—————
‘ \
Differentiable model : Differentiable model :
. . . ith parameters 6 ! ith parameters 6
Result: Models trained in this manner tend to conserve energy” with parameters S
ST S ’
! T
Predictions MSE between coordinates Total HNN-conserved quantity [q 1 p] : i] _oH [Aq I Ap]
’ I
2.0 e Ground truth 1.0 1 w—— Baseline NN =9.9 I\ S _()_p_ B (g _d_q_ - At At
o 1.5 - === Baseline NN = Hamiltonian NN
E ' = Hamiltonian NN 0.8 - -10.0 4
& 1.0 A
N 0.6 - 3 |
% o 0.5 10.1
0.4 4
% 0.0 -10.2 -
O - £ m— Ground tru : ! :
© 0-5 02 103 4 — Baceline e Model inputs are position/momentum. Model output is a scalar.
—1.0 4] = Hamiltonian NN , . .
, S ; . ' : , ; , 1 . e Model output is differentiated w.r.t. inputs to get dynamical information.
0 1 0 5 10 15 20 0 5 10 15 20
q Time step Time step e During training this is optimized, during inference this is used for prediction.

*Reasons for why this happens are still not well-understood

Sam Greydanus, Misko Dzamba, Jason Yosinski, Hamiltonian Neural Networks, https.//arxiv.org/abs/1906.01563

https://arxiv.org/abs/1906.01563

How can we extend this to more complex, PDE systems®?

Current limitations: Only applicable to particle systems. Most studies work with analytically-solved systems.

v How to extend?
>

Discrete particles, simple physics Infinite particles, complex physics

To extend to PDE systems, we make two key observations:
1. PDE systems can have Hamiltonian formulations and conserve energy (Infinite-Dimensional Hamiltonian Mechanics).

2. New architectures are needed to model infinite-dimensional Hamiltonians.

INfinite-Dimensional Hamiltonian Mechanics

rFinite Vectors Functions Gradient Hamilton’s Equations A
L T2 o du |0 6‘?—[/8q B
- y
l l l l

! Hlu+ he] — Hlu)
: u+ he| —7iu ou OH
’U,E}-(Q) H[U]]:(—)R / da:-}lg&) r ‘ E:jﬁ

LIm‘inite Functions Functionals Functional Derivative Hamilton’s Equations)

To move from finite to infinite dimensions, there are 4 changes: -
This gives us tools to analyze PDE systems buit...

1. Inputs change from vectors to functions | | | |
1. No current architectures can theoretically approximate functionals

2. Hamiltonian changes from a function to a functional (function to scalar mappings)

3. Gradients become functional derivatives 2. Derivatives of neural networks are gradients; how do you use

| | | N autograd to calculate a functional derivative” Is this even well-defined”?
4. Hamilton’s equations of motion are modified

How do we learn functionals??

Key observation: Learning functionals can be recast as learning a function through the Riesz Representation Theorem.

Theorem 3.1 (Riesz representation theorem). Let H be a Hilbert space whose inner product (x,)
is defined. For every continuous linear functional ¢ € H™ there exists a unique function f, € H,
called the Riesz representation of o, such that:

plx] = (z, f,) forallz € H. (3)

A linear functional can be represented as an inner product between the input function and its primal function.

' (u,v) = [, u(z)v(z)dz

Yes!

Can we define an inner product between functions?

\4

Ho|ul :ng(a:)u(a:)da:

Recast learning H into learning a kernel function

Propose a representation for the Hamiltonian: Integral Kernel Functional

The Integral Kernel Functional: How do we implement this”?

Consider a 1D function, defined on a set of points.

e Ve want to approximate functionals of u, a continuous function
(dotted line).

e \\e have access to its discretized representation (red points)

Hg[u]:/ﬂng

1. Write the IKF. Optionally use nonlinear kernel kg (:IZ, u(a:))

(x)u(z)dx

)

—

2. Approximate the IKF with a Riemann Sum

/QKJQ(CC, u(z))u(x)dr =~ Z ko (i, u(x;))u(x;)u; Az

~

_ y
|
v
g p XL)
lift . : proj.
T, —> [sin(Wz,+b)]—»[Scale /Shift] — 2;
N A J
- XL
u; —> [o(Wu,;+b)]X—L>[~0 80]
. 3. Parameterize kernel w/ a neural network. (In this case a SIREN))

Note: This can provably approximate linear functionals up to arbitrary accuracy. Also closely related to neural operators.

Putting everything together: 1he Hamiltonian Neural Functional

At this point, we are ready to introduce a PDE surrogate model (Neural Functionals + Hamiltonian Mechanics)

Algorithm 1 Training a HNF

1: repeat

2: Hp + Z?:l Ko (xf,;, uz)uz ,uz-A:E Forward pass to get a scalar H

3 5;29 < autograd(Hg, U) Backward pass to get functional derivative
4: [= ‘ 5;29 %Ii ‘ |2 or HJ(%) _ ‘Cil—': | |2 Evaluate loss on training data. Recall:

5: 6 <« Update(0, VyL) Ou _ ,H

6: until converged ot 7 bu

Algorithm 2 Inference with a HNF

1: repeat

. n o t\at .

2: Ho <+)., Ko (Zi, u;)u; P AT F d/Backward P
Mo | orwar dCKwar dSS

~2 <— autograd(#g, u®)

3
du |, OH

4 d‘tl —J (5—u9) . Evaluate operator J

5: u't! < ODEint(u?,) Forward solution with ODE integrator

6: until done

Experimental Setup: Toy Examples

Sample random p-order polynomials: U(QE) — C().’L‘p —+ C1 .CL'p_l + ...+ Cp_l.ili' —+ Cp

We can construct analytically-known functionals: -Fl [u] — f;lM U(QE) X ZEdeE F. nl [U] — f ;1M (’U/(Q?))de

vector scalar

Generate N samples of train/val data: (un (:Ij), f[u” (a:)]) for n = 1, Cee N

Instantiate network, train on the loss: £ — Zfz\le ‘ \f[u” (ZE)] — .FQ (un, X) | |%

How well can current neural architectures learn functionals? After training on functionals, are their derivatives also learned?

Models evaluated: Modifications:

e Neural Network (MLP): Vector to vector mappings e (OOD: Coefficients during testing are sampled outside the
training distribution
e Neural Operator (FNO): Function to function mappings
e Disc: Data are discretized on an unseen domain and
e Neural Functional (NF): Function to vector mappings spacing

Results: Toy Examples

Base OOD (c; € [1, 3]) Disc. (z; € [—2,2])
Metric MLP FNO NF | MLP FNO NF MLP FNO NF
Filu] 1.0e-5 5.4e-4 9.8e-16 | 0.043 0.097 2.7e-14 | 31.21 31.53 0.21
6F;/6u 0081 024 7.0e4 | 014 029 7.0e4 | 264 268 0.033
Fri|u) 0.12 0.026 0.0023 | 6131 5864 2126 | 3159 281.0 623
0Fn/0u 199 1.84 0.089 | 1684 1659 998 746 699 295
)

Consider two metrics:

—

% ijzl H]:[U

N
" = Fou™,x)[3 or >y |l 50

Fitting functionals

Fitting functional derivatives

autograd(Fp, u™)||3

J

e (Conventional architectures can approximate functionals in-distribution, although NFs are extremely good.

e |n OOD/Disc regimes, conventional architectures suffer and NFs retain good performance for linear functionals.

e (Conventional architectures cannot approximate functional derivatives well, and this is worse in OOD/Disc regimes.

e No architectures can extrapolate for nonlinear functionals.

Visualizations: oy eExamples

A

dF/du

1.0 -

0.8

0.6

0.4 -

0.2 1

0.0 1

-0.2 1

: . : . . 2 _ 2
Linear Functional Derivatives: dF;/du = = B Nonlinear Functional Derivatives: dF,;/du = 3u
Base Disc. Base Disc.
/ 4 1
1.0 10 -
3 0.8 o
N 3 0.6 .
- 0.4
TR © 41
— True l:‘;rl‘*\: vy Vi 1 0.2
—== MLP }i "u\:"u e A // _ 2
--- FNO | e 5‘:‘, y ! { ! 0.0
--- NF ! NS 0 ~0.2 0
~100 —0.75 —0.50 —025 0.00 025 050 075 1.00 -20 -15 -10 -05 00 05 10 15 20 ~1.00 —-0.75 —-0.50 —-0.25 0.00 025 050 0.75 1.00 20 -15 -10 -05 00 05 10 15 20
X X X X

e \Vhen examining functional derivatives, conventional architectures have trouble even on in-distribution samples.

e (On unseen discretizations, the error is even worse.

e NFs are able to implicitly learn smooth, accurate functional derivatives, even when only trained on scalar functional

data and with unseen inputs.

Experimental Setup: 1D Advection and KdV Equations

rDefine Hamiltonians for Adv/KadV:

\—

Howlt = | —5@)Pde, Huwlu) = | —5(@)® - u@) 55 (@)da,

rLookup and check Hamiltonian structure (Adv):

J 1s defined as 0, OHadv — —u(at), J (

ou

e (enerate train/val samples using numerical methods. Calculate necessary Hamiltonian quantities from data.
e [0 evaluate generalization, training data is solved only to 20% or 25% of the validation time horizon.

e Compare to Unet/FNO baselines. Train additional baselines that predict du/dt + use ODE integrator.

Results: 1D Advection and KdV Equations

H[uy'] over time, Advection H[uy'] over time, KdV

Adv KdV 100 < S
Metric: ~ Roll. Err. | Corr. Time 1 oss| A
FNO 0.81+0.17 69.5+8.2 Ll VAL] P
Unet 0.5240.35 125.7+85 e]
FNO(2%) 0.044+0002 75.5+19 %] e N N [A
Unet(%) 0.068+0.029 127.4+49 B T R SR T S T

HNF

Timestep

Timestep

0.00394+0.0002 150.9433

Unet HNF

Table 2: Results for 1D PDEs. Parame-

ter counts are: FNO (65K), Unet (65K),
HNF (32K) for Adv, and FNO (135K),
Unet (146K), HNF (87K) for KdV.

200 200

')

f)

150 150

\
\

100 100

50 50

128 256

e HNFs can be more efficient, with around half the parameters of other models.

e HNFs can be more stable, predicting solutions that conserve energies better than baselines.

e HNFs can be more generalizable, predicting solutions at timesteps unseen in the training horizon/distribution.

Experimental Setup: 2D Shallow Water Equations (SVWE)

-
Define Hamiltonian for SWE:

T — 8h+V-(vh) =0,

1 1
H[U.] — H['Uw,'vy, h] — /{; 5]1('03 -+ 'Uz) -+ ighsz
Lookup Hamiltonian Structure:
0 —q O
J=1q 0 09, quz;vx Oy
8, 8, O y Oz

o;v+v-Vv=—gVh

To evaluate generalization, generate an additional testing set with unseen initial conditions:

Sines (train/val)

Pulse (val)

T 15

Results: 2D Shallow Water Equations (SWE)

H[uy,'| over time, Sines H[uy'| over time, Pulse
Model Sines Pulse) [10| s~ ——
1.006] :rNg [T
' === Unet N o] TTTTTe~al__L
FNO 0.057+0.002 0.117+0.0009 N o T
Unet 0.010+0.0014 0.042-+0.0006 7;{[[’“({]1 . P 7;;[[2']1 0961 -~ Mo
u‘| 1.0021 i u' === Une
HNF 0.026+0.0003 0.021+0.0015 , 004] ~=7 HNF
1.000 1 %-:r\-—-’;;\--:;‘--v -------
0.998 "‘\\'J‘\:’.-_\ 0921 __ ____ P ———— e e
Table 3: Rollout errors for 2D T oo e o
SWE ‘ 0 20 40 60 80 0 20 40 60 80
t Timestep Timestep
SWE-Sines, t=10 SWE-Pulse, t=10
128 128 True 128 FNO 128 Unet 128 HNF
| | Ioo) | | “E im

64 64
X X X

e All modes work well for equations in-distribution. HNFs work well on unseen initial conditions.

e |0 both test cases, HNFs have exceptional capabilities in conserving energy.

L imitations

()
1. Many PDEs do not have a convenient Hamiltonian structure or conserve energy
"It is impossible to derive the equations of steady motion of a viscous,
incompressible fluid from a variation principle involving as Lagrangian function”
- Robert Millikan, 1923 Nobel Prize in Physics
\ _J
()
3. Additional overhead during training/inference to backpropagate through network
Model (#Params) Adv KdV SWE-Sines
FNO (65K/135K/7M) 0.0829 0.091 0.967
Unet (65K/146K/3M) 0.138 0.146 1.345
HNF (32K/87K/3M) 0.126 0.228 4.5477
Times are given in ms
\ _J

4 ™
2. Theory for nonlinear functional approximation is underdeveloped.

9

|
Way out of my depth...

\ _J

r p
4., Evaluating J in Hamilton’s equations needs to be done carefully.

Burgers Equation prediction True vs Predicted Flux

—— True Flux
~ =~ Predicted Flux

0.6 - ftrue
pred 0.6 -

0.4 1
0.4 -
0.2 1 0.2
s 0.0 3 0.0

(TS

02 -0.2 -
-0.4

-0.4 -

0 50 100 150 200 250 0 50 100 150 200 250

Outlook and Conclusion

1¢’¢0 B O B
iv"‘ e}m; e;
¢"3 86& “’ tb&

t=28330fs t=28370fs t=28372fs

Outlook

e [Neural Functionals may have more applications:

e [olecular dynamics: Functionals are system energies; energy is conserved, and derivatives are forces.
e Design: Functionals are system properties (weight/drag/etc.); derivatives can be used for optimization.

e My personal view: An interesting model/framework, but requires a lot of work to make it successful in PDEs.

| | . | et Joving Fluid
* Pure data-driven methods work well and removes the burden of carefully discretizing, developing solvers, etc. Lift

Force

Conclusions L
Pressure Variation

e Maybe the first to extend Hamiltonian mechanics to learning complex PDEs. —~ - -
F= X PNA = §pndA

surface

e Proposing a new architecture for learning functionals (there are prior works learming function to vector mappings)’
e HNFs require some tuning, but work well for conservative PDEs.

o [xcellent energy conservation: can allow more generalizable, stable, and efficient models.

Xiang Fu, Zhenghao Wu, Wuijie Wang, Tian Xie, Sinan Keten, Rafael Gomez-Bombarelli, Tommi Jaakkola, Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations, https://arxiv.org/abs/2210.07237, https.//www.grc.nasa.gov/\WWW/K-12/VirtualAero/BottleRocket/airplane/presar. hitml
1. Daniel Zhengyu Huang, Nicholas H. Nelsen, Margaret Trautner, An operator learing perspective on parameter-to-observable maps, https.//arxiv.org/abs/2402.06031

https://www.grc.nasa.gov/WWW/K-12/VirtualAero/BottleRocket/airplane/presar.html
https://arxiv.org/abs/2402.06031

Thank You!

Questions”?

Appendix

Double Pendulum

Newtonian Mechanics

Force Balance (Newton’s 2nd, 3rd Laws)

m1l1 (01 COS 91 — 0% sin 01) = —T1 sin 01 + T2 sin 02
—maly (01 sin 6 + 0% cos 01) = —Ticosf; +T5cosb0s +mag
mo (llél COS 91 — llé% sin 91 + lgéz COS 91 — lzé% sin 02) = —Tz sin 92
—my (llél sin 61 + lléf cos 01 + lofy sin Oy + 120'3 CoS 92) = —Thcosfy + mag.
“Simplify”
llél = (Tz/ml) sin(92 — 01) — gsin91

l19% = (Tl/ml) — (Tg/ml) COS(02 — tl) — g COoS 01

llél COS(92 — 91) + l19% Sin(92 — 01) + lzéz = —gsinfs
—llél Sin(02 — 91) + l19% COS(92 — 91) + 1293 = (TQ/m2) — gcosfs.

lzég = —gq sin 92 — ((Tz/ml) sin(92 — 91) — gsin 91) COS(92 — 91)
— ((Th/my) — (T2 /m1) cos(f3 — t1) — g cosBy) sin(fy — 61)
= —(Tl/ml) sin(92 — 01)

1262 = (Ty/mg) — gcosby + ((Tz/m1)sin(fy — 61) — gsin6;) sin(fy — 6;)
— ((Th/mq) — (Ta/m1) cos(02 — t1) — g cosBy) cos(f2 — 61)
= (Tz/mz) + (Tz/ml) — (Tl/ml) COS(92 — 91)

Solution
101 = (Tp/m1)sin(6y — 61) — gsin 6y T o— 150
16?2 = (T1/m1) — (Ta/my) cos(B2 — 01) — g cos b, ! "sin(fy — 6;)
129.2 = —(Tl/ml) Sin(og — 91) T [161 + gsin 6,
2 pr—

lzeg = (Tz/mz) + (Tz/ml) - (Tl/ml) COS(92 — 01)

https://www.phys.Isu.edu/faculty/gonzalez/Teaching/Phys7221/DoublePendulum. pdf, https.//dassencio.org/46

m Sin(92 — 91)

Hamiltonian Mechanics

Define Hamiltonian (Kinetic+Potential Energy)

mal3p) + (m1 +me)lip} — 2malilapg,pe, cos(61 — 62)

2m,l212 [my + mysin® (61 — 6,)]

H:

—(my + my)gly cos) — magls cos 6

Apply Hamilton’s Equations of Motion

: oH
6 = ——
6]?(;:
5 oOH
g, — —
‘ 00;
Solution
b, — oH _ lape, — lL1ps, cos(f1 — 65)
Ope, 121z [m1 + masin®(6) — 62)]
9-2 _ oOH _ ~m212p01 COS(01 — 92) + (m1 -+ ’I’nz)llpg3
ap()g mglll% [ml + Mo sin2(01 — 02)]
H .
Po, = —% = —(m1 + mz2)gli1sin@, — hy + hasin [2(01 — 62)]
1
[')9._, = —g‘TH - —nglz sin02 -+ hl - hz sin [2(91 - 92)]
2

Yy

o

Fig. 1: Adouble pendulum.

Derivation is simpler

Change of perspective

Newtonian: Objects move in
response to forces

Hamiltonian: Objects move to
minimize energy

https://dassencio.org/46

Hamiltonian Errors

Model Adv KdV SWE-Smmes SWE-Pulse
FNO 2.18 NaN 0.0091 0.1326
Unet 0.22 2.37 0.0053 0.0158
FNO(2%) 0.033 6.75¢8 - -
Unet(% 0.043 5.76e6 - -
HNF 0.0002 1.32 0.0015 0.0003

Table 4: Relative L2 Error for each experiment, evaluated on the Hamiltonian of predicted trajectories.
Despite not including the Hamiltonian in the training loss and testing on OOD samples, HNFs are
exceptional at predicting solutions that conserve the Hamiltonian.

1 7T ||H[u']-H[ui]]|3
T 2t=1" [[HR

INnductive Blases

1. ODE Bias: HNFs predict ‘fl—;‘ and use an ODE integrator to evolve PDE dynamics.

2. Hamiltonian Bias: HNFs rely on [/ ‘;—Zf to calculate ‘fi—‘;.

3. Gradient Learning Bias: HNFs rely on autograd(#Hs[u], u) to calculate 9£.

4. Neural Functional Bias: HNFs rely on neural functionals to calculate autograd(#g[u], u).

Metric: Correlation Time (?) Hamiltonian Error ({)
Unet (Base) 125.25 2.37

Unet (ODE) 120.5 5.76e6

Unet (Ham.) 143.775 2.06

Unet (Grad.) 141 4.71

HNF 151.75 1.32

Table S: Correlation time and Hamiltonian errors for Unet models with increasingly more inductive
biases, compared to HNFs on the KdV equation. Using ODE integrators or gradient domain learning
both degrade performance, while using Hamiltonian structure or neural functionals both increase
performance and energy conservation.

Numerical Methods

Numerical Integration ODE integration 1s performed using a 2nd-order Adams-Bashforth scheme.
The solution at the next timestep u**! is calculated using the current timestep u? and an estimate of

the current derivative Cfi—;‘ 1= = f(u?):

a1l = ut 4 At (gf(ut) _ —f(ut‘1)> (15)

