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Motivation - Accelerating Physics Simulation

Physics simulation allows us to understand and design for the world

Faster simulations can accelerate scientific discovery and engineering progress

https://www.nas.nasa.gov/SC14/demos/demo20.html, Perilla, J., Schulten, K. Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations. Nat Commun 8, 15959 (2017). https://doi.org/10.1038/ncomms15959 
Forrester T. Johnson, Edward N. Tinoco, N. Jong Yu, Thirty years of development and application of CFD at Boeing Commercial Airplanes, Seattle, Computers & Fluids, Volume 34, Issue 10, 2005, Pages 1115-1151, ISSN 0045-7930, https://doi.org/10.1016/j.compfluid.2004.06.005

HIV Capsid

64 Million Atoms 

3880 GPU Nodes 

~130 days of simulation 

Liquid Rocket Engine

350 Million Cells 

4000 CPU Nodes 

~14 days of simulation 

Analysis Timelines at Boeing 
747: 4 Years 
767: 3 Years 
777: <1 Year



Technical Motivation - Physical Constraints in PDE Surrogates

Problem 
• Neural PDE surrogates make purely data-driven predictions  
• Predictions usually become unstable due to lack of physical grounding

Physical Grounding 
• More efficient: Inductive biases can lead to faster training and fewer 

parameters 
• More stable: Ensure predictions are physically consistent and obey   

known principles 
• More generalizable: Different systems can have the same physical priors

Phillip Lippe, Microsoft AI4Science, https://drive.google.com/file/d/1Qk7hX1InUmFwr9wk0HuWmB-OJ9llbAMG/view, Karniadakis, G.E., Kevrekidis, I.G., Lu, L. et al. Physics-informed machine learning. Nat Rev Phys 3, 422–440 (2021). https://doi.org/10.1038/s42254-021-00314-5

Numerical Simulation Neural Surrogate

https://doi.org/10.1038/s42254-021-00314-5


What are prior methods for embedding physical priors? 

Physics-Informed Losses 
• Degenerate for complex systems 
• Challenging to optimize in practice

Equivariant/Invariant NNs 
• Challenging to design/implement 
• Work well for targeted systems

Chuang, P.-Y., Barba, L.A.: Experience report of physics-informed neural networks in fluid simulations: pitfalls and frustration. arXiv preprint arXiv:2205.14249 (2022); https://greydanus.github.io/2019/05/15/hamiltonian-nns/ 
Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik Kashinath, Anima Anandkumar, Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere, https://arxiv.org/abs/2306.03838

Hamiltonian NNs 
• Only shown for simple, 

particle systems

Subset

How do we extend these to PDE systems?

https://arxiv.org/abs/2306.03838


Background - What is Hamiltonian Mechanics? 

https://www.phys.lsu.edu/faculty/gonzalez/Teaching/Phys7221/DoublePendulum.pdf

Why does the world evolve in the way it does? 

Newton: Physics occurs as a result of forces (Newton’s Laws) 

Lagrange/Hamilton: Physics occurs because it minimizes the universe’s action

Hamiltonian Mechanics is a way of interpreting/deriving physics
Double Pendulum

Newtonian Mechanics: Write force balance and simplify Hamiltonian Mechanics: Write total energy and minimize

… plug and chug Minima found with Hamilton’s Equations of Motion

A simpler and more universal framework for physics



How is Hamiltonian Mechanics useful for learning physics?

Sam Greydanus, Misko Dzamba, Jason Yosinski, Hamiltonian Neural Networks, https://arxiv.org/abs/1906.01563

Original problem: Neural networks lack physical grounding. 

Solution (HNNs): Apply neural networks in a Hamiltonian framework.

Recall: Hamiltonian mechanics relies on an energy and its derivatives

Define Hamiltonian (H); Update position and momentum 
by differentiating the Hamiltonian

In Machine Learning: Learn H with neural network, find derivatives w/ autograd

Result: Models trained in this manner tend to conserve energy*

*Reasons for why this happens are still not well-understood

• Model inputs are position/momentum. Model output is a scalar. 
• Model output is differentiated w.r.t. inputs to get dynamical information.  
• During training this is optimized, during inference this is used for prediction.

https://arxiv.org/abs/1906.01563


How can we extend this to more complex, PDE systems?

Current limitations: Only applicable to particle systems. Most studies work with analytically-solved systems.

Discrete particles, simple physics

How to extend?

Infinite particles, complex physics

To extend to PDE systems, we make two key observations: 

1. PDE systems can have Hamiltonian formulations and conserve energy (Infinite-Dimensional Hamiltonian Mechanics). 

2. New architectures are needed to model infinite-dimensional Hamiltonians.



Infinite-Dimensional Hamiltonian Mechanics

To move from finite to infinite dimensions, there are 4 changes: 

1. Inputs change from vectors to functions 

2. Hamiltonian changes from a function to a functional  

3. Gradients become functional derivatives 

4. Hamilton’s equations of motion are modified

Vectors

Functions

Functions

Functionals

GradientFinite

Infinite Functional Derivative

Hamilton’s Equations

Hamilton’s Equations

This gives us tools to analyze PDE systems but… 

1. No current architectures can theoretically approximate functionals 
(function to scalar mappings) 

2. Derivatives of neural networks are gradients; how do you use 
autograd to calculate a functional derivative? Is this even well-defined?



How do we learn functionals? 

Key observation: Learning functionals can be recast as learning a function through the Riesz Representation Theorem. 

A linear functional can be represented as an inner product between the input function and its primal function.

Can we define an inner product between functions?
Yes!

Propose a representation for the Hamiltonian: Integral Kernel Functional

Recast learning H into learning a kernel function 



The Integral Kernel Functional: How do we implement this?

Consider a 1D function, defined on a set of points. 

• We want to approximate functionals of u, a continuous function 
(dotted line).  

• We have access to its discretized representation (red points)

1. Write the IKF. Optionally use nonlinear kernel

2. Approximate the IKF with a Riemann Sum

3. Parameterize kernel w/ a neural network. (In this case a SIREN)

Note: This can provably approximate linear functionals up to arbitrary accuracy. Also closely related to neural operators.



Putting everything together: The Hamiltonian Neural Functional
At this point, we are ready to introduce a PDE surrogate model (Neural Functionals + Hamiltonian Mechanics)

Forward pass to get a scalar H
Backward pass to get functional derivative 
Evaluate loss on training data. Recall:

Forward/Backward Pass

Evaluate operator J
Forward solution with ODE integrator



Experimental Setup: Toy Examples

Sample random p-order polynomials:

We can construct analytically-known functionals:

Generate N samples of train/val data:
vector scalar

Instantiate network, train on the loss:

How well can current neural architectures learn functionals? After training on functionals, are their derivatives also learned?

Models evaluated: 

• Neural Network (MLP): Vector to vector mappings 

• Neural Operator (FNO): Function to function mappings 

• Neural Functional (NF): Function to vector mappings

Modifications: 

• OOD: Coefficients during testing are sampled outside the 
training distribution 

• Disc: Data are discretized on an unseen domain and 
spacing



Results: Toy Examples

Consider two metrics:

Fitting functionals Fitting functional derivatives

• Conventional architectures can approximate functionals in-distribution, although NFs are extremely good. 

• In OOD/Disc regimes, conventional architectures suffer and NFs retain good performance for linear functionals. 

• Conventional architectures cannot approximate functional derivatives well, and this is worse in OOD/Disc regimes. 

• No architectures can extrapolate for nonlinear functionals.



Visualizations: Toy Examples

• When examining functional derivatives, conventional architectures have trouble even on in-distribution samples. 

• On unseen discretizations, the error is even worse. 

• NFs are able to implicitly learn smooth, accurate functional derivatives, even when only trained on scalar functional 
data and with unseen inputs.



Experimental Setup: 1D Advection and KdV Equations

• Generate train/val samples using numerical methods. Calculate necessary Hamiltonian quantities from data. 

• To evaluate generalization, training data is solved only to 20% or 25% of the validation time horizon. 

• Compare to Unet/FNO baselines. Train additional baselines that predict du/dt + use ODE integrator.

Define Hamiltonians for Adv/KdV:

Lookup and check Hamiltonian structure (Adv):



Results: 1D Advection and KdV Equations

• HNFs can be more efficient, with around half the parameters of other models.  

• HNFs can be more stable, predicting solutions that conserve energies better than baselines. 

• HNFs can be more generalizable, predicting solutions at timesteps unseen in the training horizon/distribution.



Experimental Setup: 2D Shallow Water Equations (SWE)

Define Hamiltonian for SWE:

Lookup Hamiltonian Structure:

Sines (train/val)

Pulse (val)

To evaluate generalization, generate an additional testing set with unseen initial conditions:



Results: 2D Shallow Water Equations (SWE)

• All modes work well for equations in-distribution. HNFs work well on unseen initial conditions. 

• In both test cases, HNFs have exceptional capabilities in conserving energy.



Limitations 

1. Many PDEs do not have a convenient Hamiltonian structure or conserve energy 2. Theory for nonlinear functional approximation is underdeveloped.

3. Additional overhead during training/inference to backpropagate through network 4. Evaluating J in Hamilton’s equations needs to be done carefully.

Times are given in ms

"It is impossible to derive the equations of steady motion of a viscous, 
incompressible fluid from a variation principle involving as Lagrangian function” 
- Robert Millikan, 1923 Nobel Prize in Physics

Way out of my depth…



Outlook and Conclusion

Outlook 

• Neural Functionals may have more applications: 

• Molecular dynamics: Functionals are system energies; energy is conserved, and derivatives are forces. 

• Design: Functionals are system properties (weight/drag/etc.); derivatives can be used for optimization. 

• My personal view: An interesting model/framework, but requires a lot of work to make it successful in PDEs. 

• Pure data-driven methods work well and removes the burden of carefully discretizing, developing solvers, etc.

Xiang Fu, Zhenghao Wu, Wujie Wang, Tian Xie, Sinan Keten, Rafael Gomez-Bombarelli, Tommi Jaakkola, Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations, https://arxiv.org/abs/2210.07237, https://www.grc.nasa.gov/WWW/K-12/VirtualAero/BottleRocket/airplane/presar.html 
1. Daniel Zhengyu Huang, Nicholas H. Nelsen, Margaret Trautner, An operator learning perspective on parameter-to-observable maps, https://arxiv.org/abs/2402.06031

Conclusions 

• Maybe the first to extend Hamiltonian mechanics to learning complex PDEs. 

• Proposing a new architecture for learning functionals (there are prior works learning function to vector mappings)1 

• HNFs require some tuning, but work well for conservative PDEs.  

• Excellent energy conservation: can allow more generalizable, stable, and efficient models.

https://www.grc.nasa.gov/WWW/K-12/VirtualAero/BottleRocket/airplane/presar.html
https://arxiv.org/abs/2402.06031


Thank You!
Questions?



Appendix



Double Pendulum

https://www.phys.lsu.edu/faculty/gonzalez/Teaching/Phys7221/DoublePendulum.pdf, https://dassencio.org/46

Newtonian Mechanics

Force Balance (Newton’s 2nd, 3rd Laws) 

“Simplify”

Solution

Hamiltonian Mechanics

Define Hamiltonian (Kinetic+Potential Energy)

Apply Hamilton’s Equations of Motion

Solution

Derivation is simpler 

Change of perspective 

Newtonian: Objects move in 
response to forces 

Hamiltonian: Objects move to 
minimize energy 

https://dassencio.org/46


Hamiltonian Errors



Inductive Biases



Numerical Methods


