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What is the common framework for applying neural surrogates?

• Trained to minimize next-step loss: u*(t+1) - u(t+1). Simple to train/implement. 
• Generally treats solution updates as a black box by directly outputting solution field.
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Input: Solution at time T, u(t) Output: Solution at time T+1, u*(t+1)

Neural 
Surrogate

Is this the most effective framework?



How do numerical solvers update solution values?
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Governing Equation: ut = F(ux, uxx , …) 

Example: 1D Advection Equation

Approximate Spatial Derivatives

Example: Central Differences

Apply Time-Stepping Scheme

Example: Forward Euler

• Both spatial/temporal schemes highly influences solution speed/accuracy. 

• Can be very complex. Many different schemes, each with tradeoffs and designed for 
different purposes. Still a highly active area of research. 



Are neural surrogates an over-simplification?
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Turbulent Flow 
Reaction-Diffusion 

Plasma Physics 
… etc.

FVM/FEM/FDM, etc. 
Shock-capturing Schemes 
Discontinuous Galerkin 

…etc.

Implicit/Explicit 
Higher-order Integrators 

Operator Splitting 
…etc.

Governing Equation: ut = F(ux, uxx , …) Approximate Spatial Derivatives Apply Time-Stepping Scheme

Usually bundled together using the same framework. Neural surrogates generally rely on      
architecture/training to handle complexity, rather than specialized numerical methods.
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Are neural surrogates an over-simplification?
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Turbulent Flow 
Reaction-Diff

Plasma Physics 
… etc.

FVM/FEM/FDM, etc. 
Shock-capturing Schemes 
Discontinuous Galerkin 

…etc.

Implicit/Explicit 
Higher-order Integrators 

Operator Splitting 
…etc.

Governing Equation: ut = F(ux, uxx , …) Approximate Spatial Derivatives Apply Time-Stepping Scheme

Re-introduce time integrators into neural surrogates

Usually bundled together using the same framework. Neural surrogates generally rely on      
architecture/training to handle complexity, rather than specialized numerical methods.



How do we introduce time-integration into neural surrogates?
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Only 2 changes: 1) Predict u’(t) rather than u(t+1) during training. 2) Use time-stepping scheme during inference.

Phase space, u 



How do we introduce time-integration into neural surrogates?
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Only 2 changes: 1) Predict u’(t) rather than u(t+1) during training. 2) Use time-stepping scheme during inference.

Phase space, u 

Solution Manifold u(t=0)

u(t=1)
u(t=2)

u(t=3)

Increasing time



How do we introduce time-integration into neural surrogates?
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Only 2 changes: 1) Predict u’(t) rather than u(t+1) during training. 2) Use time-stepping scheme during inference.

Phase space, u 

Solution Manifold u(t=0)

u(t=1)
u(t=2)

u(t=3)

Increasing time
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Zoom in on a single step



How do we introduce time-integration into neural surrogates?
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Only 2 changes: 1) Predict u’(t) rather than u(t+1) during training. 2) Use time-stepping scheme during inference.

Phase space, u 

u(t=0)

u(t=1)

Neural 
Surrogate u*(t=1)

Error

State Prediction: Predict u(t+1)  



How do we introduce time-integration into neural surrogates?

10

Only 2 changes: 1) Predict u’(t) rather than u(t+1) during training. 2) Use time-stepping scheme during inference.

Phase space, u 

Neural 
Surrogate

u(t=0)

u(t=1)

u*(t=1) = u(t=0) + Δt ⋅ u’(t=0) 

Error

Derivative Prediction: Predict u’(t)  

u’(t=0)

Δt
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Phase space, u 

u(t=0)

u(t=1)

u’(t=0)

0.5Δt

How can this be beneficial?
1) Flexible step sizing during inference 2) Better accuracy with higher-order integrators

u*(t=0.5) = u(t=0) + 0.5Δt ⋅ u’(t=0) 
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Phase space, u 

u(t=0)

u(t=1)

u’(t=0.5)
0.5Δt

How can this be beneficial?
1) Flexible step sizing during inference 2) Bett

u*(t=1) = u*(t=0.5) + 0.5Δt ⋅ u’(t=0.5) 
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Phase space, u 

u(t=0)

u(t=1)

How can this be beneficial?
1) Flexible step sizing during inference 2) Better accuracy with higher-order integrators

u*(t=1) = u(t=0) + Δt ⋅ u’(t=0) 
u’(t=0)

Δt u’(t=1)

u^(t=1) = u(t=0) + Δt ⋅ u’(t=1) 

Δt
0.5(u*(t=1)+u^(t=1)) 
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A More Formal Definition

Training Inference

Learn current derivative. Calculated  
with FD schemes from data

Solve next step by integrating 
 predicted derivative

Forward Euler
Heun’s Method

Can be changed without retraining modelSmall change to loss formulation - No architecture/data changes



Remark: This is not a novel approach
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• Residual Prediction: F(u(t)) =  u(t+1) - u(t) 
• Often used in climate applications/GNN-based surrogates 
• Can be seen as a scaled Forward Euler approximation 

• Derivative Prediction 
• Two works use an RK2 integrator [1, 2] 

• Hybrid Solvers 
• Surrogates often predict spatial derivatives or portions of PDE update 
• Ex. Convective flux approximation in Navier-Stokes Equation 

• Hamiltonian/Lagrangian NNs, Neural ODEs 
• Need an ODE integrator since HNNs/LNNs/Neural ODEs only predict derivatives

1.  Sanchez-Gonzalez, A., Bapst, V., Cranmer, K., Battaglia, P.: Hamiltonian Graph Networks with ODE Integrators (2019). https://arxiv.org/abs/1909.1279,  

2. Zeng, B., Wang, Q., Yan, M., Liu, Y., Chengze, R., Zhang, Y., Liu, H., Wang, Z., Sun, H.: PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems (2024). https://arxiv.org/abs/2410.01337

https://arxiv.org/abs/1909.1279


Experimental Setup
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• Models considered (FNO/Unet) 
• PDEs considered 

• 1D: Advection, Heat, KS 
• 2D: Burgers, NS, Kolmogorov Flow 

• Training: use a 4-th order FD scheme to approximate spatial derivatives from dataset 
• Inference 

• Forward Euler: 1st-order, simple/fast 
• Adams-Bashforth: 2nd-order, linear multistep method 
• Heun: 2nd-order, predictor-corrector method 
• RK4: 4-th order, Runge-Kutta method



Results: Prediction Accuracy
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• Higher order integrators are only needed for more complex equations (KS, Kolm. Flow) 
• More compute is needed during inference to evaluate higher-order schemes 

• Overall, derivative prediction can help stabilize rollouts and improve performance

No increase in accuracy 
w/ increasing order

Higher-order schemes 
benefit chaotic systems

Higher-order schemes 
become more important



Results: Prediction Accuracy
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White lines denote correlation time, after which solution diverges



Results: Inference Modifications
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Derivative prediction can offer additional flexibility, since it does not fix the resolution of the surrogate.

u(t=0)

Neural 
Surrogate

u*(t=1)

Δt is fixed

Neural 
Surrogate

u(t=0) u*(t=1) = u(t=0) + Δt ⋅ u’(t=0) 

u’(t=0)

Δt can be variable

Can train on more finely discretized data Can adaptively change step size during inference

How to use this flexibility?



Results: Inference Modifications
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Can train on more finely discretized data Can adaptively change step size during inference

1) Solve Trajectory w/ Numerical Solver. Δt is usually very small.

2) Downsample by 10-1000x to form dataset. Discards 90-99% of data. 

Train on high-res data to obtain accurate derivative estimates. Inference on large Δt for fast time-stepping



Results: Inference Modifications
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• Extra data is more beneficial for complex systems. 
• Additional data is very similar to existing data, but is free. 

• Extra steps during inference can improve accuracy. Still better to use higher-order schemes. 
• Opportunity to use adaptive step sizing with high-order schemes. (Adaptive RK4 is SoA*)

*used in MATLAB’s ode45(): https://www.eng.auburn.edu/~tplacek/courses/3600/ode45berkley.pdf



Limitations: Performance depends on Δt
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Error increases as 
Δt increases 

Higher-order 
schemes mitigate this

Effect is worse in 
complex systems Higher-order schemes 

eventually diverge

• Rollout error is dependent on step size Δt.  
• Complex systems require higher-order integrators and smaller step size. 

• Re-introduces discretization constraints to neural surrogates 
• Step size can still be much larger than numerically stable Δt. (i.e., CFL > 1) 
• Steady-state problems (Darcy flow, statics) are incompatible.



What drives this dependence on Δt?
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• Even with perfect derivatives, numerical error still accumulates (truncation error) 
• In early stages, numerical error drives error accumulation. Larger Δt exacerbates this. 
• In later stages, model error contributes to error propagation + instability 

• Majority of performance gains to be made by improving model

Error follows 
numerical oracle

Numerical + Model 
error accumulates

Effect is more acute  
in complex systems



Why does derivative prediction work well? 
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• Plotting rollout loss vs. perturbed, trained weights: 
• Hypotheses: 

• Predicting the change in the state is more informative than the state itself 
• Better stability from only adding a small change Δt ⋅ u’(t) vs. predicting an entirely new 

state u(t+1), assuming previous state is accurate.

*assuming sufficiently small Δt 



Thank you for listening!

Questions/Comments?



Appendix: Overview
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Appendix: Integration Schemes
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Appendix: Kolmogorov Flow
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Appendix: Training Modifications
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Appendix: Noised Trajectories
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Appendix: Next-Step Error
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Appendix: Timing Experiments
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