
Predicting Change, Not States: An Alternate
Framework for Neural PDE Surrogates

Anthony Zhou, Amir Barati Farimani
Carnegie Mellon University, 2/14/2025

What is the common framework for applying neural surrogates?

• Trained to minimize next-step loss: u*(t+1) - u(t+1). Simple to train/implement.
• Generally treats solution updates as a black box by directly outputting solution field.

2

Input: Solution at time T, u(t) Output: Solution at time T+1, u*(t+1)

Neural
Surrogate

Is this the most effective framework?

How do numerical solvers update solution values?

3

Governing Equation: ut = F(ux, uxx , …)

Example: 1D Advection Equation

Approximate Spatial Derivatives

Example: Central Differences

Apply Time-Stepping Scheme

Example: Forward Euler

• Both spatial/temporal schemes highly influences solution speed/accuracy.

• Can be very complex. Many different schemes, each with tradeoffs and designed for
different purposes. Still a highly active area of research.

Are neural surrogates an over-simplification?

4

Turbulent Flow
Reaction-Diffusion

Plasma Physics
… etc.

FVM/FEM/FDM, etc.
Shock-capturing Schemes
Discontinuous Galerkin

…etc.

Implicit/Explicit
Higher-order Integrators

Operator Splitting
…etc.

Governing Equation: ut = F(ux, uxx , …) Approximate Spatial Derivatives Apply Time-Stepping Scheme

Usually bundled together using the same framework. Neural surrogates generally rely on
architecture/training to handle complexity, rather than specialized numerical methods.

111

Are neural surrogates an over-simplification?

5

Turbulent Flow
Reaction-Diff

Plasma Physics
… etc.

FVM/FEM/FDM, etc.
Shock-capturing Schemes
Discontinuous Galerkin

…etc.

Implicit/Explicit
Higher-order Integrators

Operator Splitting
…etc.

Governing Equation: ut = F(ux, uxx , …) Approximate Spatial Derivatives Apply Time-Stepping Scheme

Re-introduce time integrators into neural surrogates

Usually bundled together using the same framework. Neural surrogates generally rely on
architecture/training to handle complexity, rather than specialized numerical methods.

How do we introduce time-integration into neural surrogates?

6

Only 2 changes: 1) Predict u’(t) rather than u(t+1) during training. 2) Use time-stepping scheme during inference.

Phase space, u

How do we introduce time-integration into neural surrogates?

7

Only 2 changes: 1) Predict u’(t) rather than u(t+1) during training. 2) Use time-stepping scheme during inference.

Phase space, u

Solution Manifold u(t=0)

u(t=1)
u(t=2)

u(t=3)

Increasing time

How do we introduce time-integration into neural surrogates?

8

Only 2 changes: 1) Predict u’(t) rather than u(t+1) during training. 2) Use time-stepping scheme during inference.

Phase space, u

Solution Manifold u(t=0)

u(t=1)
u(t=2)

u(t=3)

Increasing time

111

Zoom in on a single step

How do we introduce time-integration into neural surrogates?

9

Only 2 changes: 1) Predict u’(t) rather than u(t+1) during training. 2) Use time-stepping scheme during inference.

Phase space, u

u(t=0)

u(t=1)

Neural
Surrogate u*(t=1)

Error

State Prediction: Predict u(t+1)

How do we introduce time-integration into neural surrogates?

10

Only 2 changes: 1) Predict u’(t) rather than u(t+1) during training. 2) Use time-stepping scheme during inference.

Phase space, u

Neural
Surrogate

u(t=0)

u(t=1)

u*(t=1) = u(t=0) + Δt ⋅ u’(t=0)

Error

Derivative Prediction: Predict u’(t)

u’(t=0)

Δt

11

Phase space, u

u(t=0)

u(t=1)

u’(t=0)

0.5Δt

How can this be beneficial?
1) Flexible step sizing during inference 2) Better accuracy with higher-order integrators

u*(t=0.5) = u(t=0) + 0.5Δt ⋅ u’(t=0)

12

Phase space, u

u(t=0)

u(t=1)

u’(t=0.5)
0.5Δt

How can this be beneficial?
1) Flexible step sizing during inference 2) Bett

u*(t=1) = u*(t=0.5) + 0.5Δt ⋅ u’(t=0.5)

13

Phase space, u

u(t=0)

u(t=1)

How can this be beneficial?
1) Flexible step sizing during inference 2) Better accuracy with higher-order integrators

u*(t=1) = u(t=0) + Δt ⋅ u’(t=0)
u’(t=0)

Δt u’(t=1)

u^(t=1) = u(t=0) + Δt ⋅ u’(t=1)

Δt
0.5(u*(t=1)+u^(t=1))

14

A More Formal Definition

Training Inference

Learn current derivative. Calculated
with FD schemes from data

Solve next step by integrating
 predicted derivative

Forward Euler
Heun’s Method

Can be changed without retraining modelSmall change to loss formulation - No architecture/data changes

Remark: This is not a novel approach

15

• Residual Prediction: F(u(t)) = u(t+1) - u(t)
• Often used in climate applications/GNN-based surrogates
• Can be seen as a scaled Forward Euler approximation

• Derivative Prediction
• Two works use an RK2 integrator [1, 2]

• Hybrid Solvers
• Surrogates often predict spatial derivatives or portions of PDE update
• Ex. Convective flux approximation in Navier-Stokes Equation

• Hamiltonian/Lagrangian NNs, Neural ODEs
• Need an ODE integrator since HNNs/LNNs/Neural ODEs only predict derivatives

1. Sanchez-Gonzalez, A., Bapst, V., Cranmer, K., Battaglia, P.: Hamiltonian Graph Networks with ODE Integrators (2019). https://arxiv.org/abs/1909.1279,

2. Zeng, B., Wang, Q., Yan, M., Liu, Y., Chengze, R., Zhang, Y., Liu, H., Wang, Z., Sun, H.: PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems (2024). https://arxiv.org/abs/2410.01337

https://arxiv.org/abs/1909.1279

Experimental Setup

16

• Models considered (FNO/Unet)
• PDEs considered

• 1D: Advection, Heat, KS
• 2D: Burgers, NS, Kolmogorov Flow

• Training: use a 4-th order FD scheme to approximate spatial derivatives from dataset
• Inference

• Forward Euler: 1st-order, simple/fast
• Adams-Bashforth: 2nd-order, linear multistep method
• Heun: 2nd-order, predictor-corrector method
• RK4: 4-th order, Runge-Kutta method

Results: Prediction Accuracy

17

• Higher order integrators are only needed for more complex equations (KS, Kolm. Flow)
• More compute is needed during inference to evaluate higher-order schemes

• Overall, derivative prediction can help stabilize rollouts and improve performance

No increase in accuracy
w/ increasing order

Higher-order schemes
benefit chaotic systems

Higher-order schemes
become more important

Results: Prediction Accuracy

18

White lines denote correlation time, after which solution diverges

Results: Inference Modifications

19

Derivative prediction can offer additional flexibility, since it does not fix the resolution of the surrogate.

u(t=0)

Neural
Surrogate

u*(t=1)

Δt is fixed

Neural
Surrogate

u(t=0) u*(t=1) = u(t=0) + Δt ⋅ u’(t=0)

u’(t=0)

Δt can be variable

Can train on more finely discretized data Can adaptively change step size during inference

How to use this flexibility?

Results: Inference Modifications

20

Can train on more finely discretized data Can adaptively change step size during inference

1) Solve Trajectory w/ Numerical Solver. Δt is usually very small.

2) Downsample by 10-1000x to form dataset. Discards 90-99% of data.

Train on high-res data to obtain accurate derivative estimates. Inference on large Δt for fast time-stepping

Results: Inference Modifications

21

• Extra data is more beneficial for complex systems.
• Additional data is very similar to existing data, but is free.

• Extra steps during inference can improve accuracy. Still better to use higher-order schemes.
• Opportunity to use adaptive step sizing with high-order schemes. (Adaptive RK4 is SoA*)

*used in MATLAB’s ode45(): https://www.eng.auburn.edu/~tplacek/courses/3600/ode45berkley.pdf

Limitations: Performance depends on Δt

22

Error increases as
Δt increases

Higher-order
schemes mitigate this

Effect is worse in
complex systems Higher-order schemes

eventually diverge

• Rollout error is dependent on step size Δt.
• Complex systems require higher-order integrators and smaller step size.

• Re-introduces discretization constraints to neural surrogates
• Step size can still be much larger than numerically stable Δt. (i.e., CFL > 1)
• Steady-state problems (Darcy flow, statics) are incompatible.

What drives this dependence on Δt?

23

• Even with perfect derivatives, numerical error still accumulates (truncation error)
• In early stages, numerical error drives error accumulation. Larger Δt exacerbates this.
• In later stages, model error contributes to error propagation + instability

• Majority of performance gains to be made by improving model

Error follows
numerical oracle

Numerical + Model
error accumulates

Effect is more acute
in complex systems

Why does derivative prediction work well?

24

• Plotting rollout loss vs. perturbed, trained weights:
• Hypotheses:

• Predicting the change in the state is more informative than the state itself
• Better stability from only adding a small change Δt ⋅ u’(t) vs. predicting an entirely new

state u(t+1), assuming previous state is accurate.

*assuming sufficiently small Δt

Thank you for listening!

Questions/Comments?

Appendix: Overview

26

Appendix: Integration Schemes

27

Appendix: Kolmogorov Flow

28

Appendix: Training Modifications

29

Appendix: Noised Trajectories

30

Appendix: Next-Step Error

31

Appendix: Timing Experiments

32

