Predicting Change, Not States: An Alternate
Framework for Neural PDE Surrogates

Anthony Zhou, Amir Barati Farimani
Carnegie Mellon University, 2/14/2025

What is the common framework for applying neural surrogates?

u(x, t) u(x, t + nAt)

Neural
Surrogate

Input: Solution at time T, u(t) Output: Solution at time T+1, u'(+1)

o Trained to minimize next-step loss: u'(¢t+1) - u(t+1). Simple to train/implement.

o Generally treats solution updates as a black box by directly outputting solution field.

Is this the most effective framework?

How do numerical solvers update solution values?

Governing Equation: u;s = F(ux, Uxx, ...) Approximate Spatial Derivatives Apply Time-Stepping Scheme
J J
Ju u U, —u
Fc— =0. — —c 1 — Yus1 = Yu + hf(tn,)
ot 0x 2 A\x
Example: 1D Advection Equation Example: Central Differences Example: Forward Euler

o Both spatial/temporal schemes highly influences solution speed/accuracy.

o Can be very complex. Many different schemes, each with tradeofts and designed for
different purposes. Still a highly active area of research.

Are neural surrogates an over-simplification?

Governing Equation: us = F(ux, Uxx, ...) Approximate Spatial Derivatives Apply Time-Stepping Scheme

Explicitly integrated oo
trajectory arcs \. o* ———

y
CG DG ‘
State /
value
<« o0 = >
Segment 1

Turbulent Flow FVM/FEM/FDM, etc. Implicit/Explicit
Reaction-Diftusion Shock-capturing Schemes Higher-order Integrators
Plasma Physics Discontinuous Galerkin Operator Splitting
.. etc. ...etc. ...etc.

Usually bundled together using the same framework. Neural surrogates generally rely on
architecture/training to handle complexity, rather than specialized numerical methods.

Are neural surrogates an over-simplification?

Re-introduce time integrators into neural surrogates

Apply Time-Stepping Scheme

Implicit/Explicit
Higher-order Integrators
Operator Splitting

...etc.

How do we introduce time-integration into neural surrogates?

Only 2 changes: 1) Predict u’(t) rather than w(t+1) during training. 2) Use time-stepping scheme during inference.

Phase space, u

How do we introduce time-integration into neural surrogates?

Only 2 changes: 1) Predict u’(t) rather than w(t+1) during training. 2) Use time-stepping scheme during inference.

‘ / Increasing time

..,.-ii&‘:S)

Phase space, u

Solution Manifold

Zoom in on a single step

How do we introduce time-integration into neural surrogates?

Only 2 changes: 1) Predict w’(t) rather than u(t+1) during training. 2) Use time-stepping scheme during inference.

Phase space, u . .
P State Prediction: Predict u(t+1)

r)
.. » Neural . o u'(t=1)
Surrogate A
u(t=0) ... k J
Error
e v .
.......................... Q-

How do we introduce time-integration into neural surrogates?

Only 2 changes: 1) Predict w’(t) rather than u(t+1) during training. 2) Use time-stepping scheme during inference.

Phase space, u L . . ,
P Derivative Prediction: Predict u’(%)

r N
Neural u’(t=0)
Surrogate <—°"0...l o u’(t=1) = u(t=0) + At - u’(t=0)
- ’u(t=0)... At 4
Error
St v .
.......................... O

How can this be beneficial?

1) Flexible step sizing during inference

Phase space, u

O

2) Better accuracy with higher-order integrators

o u*(t=0.5) = u(t=0) + 0.5At - u’(t=0)

11

How can this be beneficial?

1) Flexible step sizing during inference

Phase space, u

O o u’(t:05)

o u*(t=1) = u™(t=0.5) + 0.5At - u’(t=0.5)

12

How can this be beneficial?

2) Better accuracy with higher-order integrators

Phase space, u

u’(t=0) ,
o - o u’(t=1) = u(t=0) + At - u’(t=0)
......... - o 05(u(t=1)ru(t=1)
..................................... O
u(t=1)

o u’(t=1)=u(t=0) + At - u’(t=1)

13

A More Formal Definition

Iraining

Lo(u(tn),tn,y) = ||Fo(u(tn), tn) — yl|2,

- Ju(tn41) state-prediction
Y %—':ltztn derivative-prediction

[Learn current derivative. Calculated
with FD schemes from data

Small change to loss formulation - No architecture/data changes

Inference

U(tpe) =ul(ty,) + AtFy(u(t,),t,)

U(tns1) = 0(tn) + S (Fo(u(tn),) + Fol@ltns), tns)

Heun’s Method

Solve next step by integrating
predicted derivative

Can be changed without retraining model

14

Remark: This is not a novel approach

e Residual Prediction: F(u(t)) = u(t+1) - u(t)
o Often used in climate applications/GNN-based surrogates
e Can be seen as a scaled Forward Euler approximation

e Derivative Prediction

o Two works use an RK2 integrator [1, 2]

e Hybrid Solvers
o Surrogates often predict spatial derivatives or portions of PDE update

o Ex. Convective flux approximation in Navier-Stokes Equation
o Hamiltonian/Lagrangian NNs, Neural ODEs
e Need an ODE integrator since HNNs/LNNs/Neural ODEs only predict derivatives

1. Sanchez-Gonzalez, A., Bapst, V., Cranmer, K., Battaglia, P.: Hamiltonian Graph Networks with ODE Integrators (2019). https://arxiv.org/abs/1909.1279,

2. Zeng, B., Wang, Q., Yan, M., Liu, Y., Chengze, R., Zhang, Y., Liu, H., Wang, Z., Sun, H.: PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems (2024). https://arxiv.org/abs/2410.01337

15

https://arxiv.org/abs/1909.1279

Experimental Setup

e Models considered (FNO/Unet)
e PDEs considered
e 1D: Advection, Heat, KS
o 2D: Burgers, NS, Kolmogorov Flow
e Training: use a 4-th order FD scheme to approximate spatial derivatives from dataset
o Inference
o Forward Euler: 1st-order, simple/fast
o Adams-Bashforth: 2nd-order, linear multistep method
e Heun: 2nd-order, predictor-corrector method

o RK4: 4-th order, Runge-Kutta method

16

Results: Prediction Accuracy

Higher-order schemes

PDE: Adv Heat KS Burgers NS Kolm. Flow
Metric: Roll. Err. | Roll. Err. | Corr. Time T Roll. Err. | Roll. Err. | Corr. Time 1
FNO (State Pred.) 0.498 0.589 0.437 0.715 51.4
FNO (FwdEuler) 0.048 0.141 0.196 0.159 29.0
FNO (Adams) 0.032 0.141 0174 0.100 45.5
FNO (Heun) 0.032 0.141 Higher-order schemes 0.100 81.6
FNO (RK4) 0.033 0.141 benefit chaotic systems 0.100 82.3
Unet (State Pred.) 0.149 153.5 0.666 0.099

Unet (FwdEuler) 0.139 76.5 0.280 0.093

Unet (Adams) 0 139 167.75 0.264 0.048

Unet (Heun) No increase in accuracy 173.5 0.263 0.049

Unet (RK4) w/ increasing order 174.5 0.264 0.049

become more important

Table 1: Prediction Accuracy. Results on prediction accuracy across different PDEs, models,
and training/inference frameworks.

o Higher order integrators are only needed for more complex equations (KS, Kolm. Flow)

e More compute is needed during inference to evaluate higher-order schemes

o Overall, derivative prediction can help stabilize rollouts and improve performance

17

Results: Prediction Accuracy

KS

FNO-state FNO-RK4 Unet-state Unet-RK4

) ol 100 150 0 ol 100 150 0 ol 100 150 0 ol 100 150

White lines denote correlation time, after which solution diverges

0

ol

Reference

100

150

200

18

Results: Inference Modifications

Derivative prediction can offer additional flexibility, since it does not fix the resolution of the surrogate.

.

Neural
Surrogate

J

At can be variable

r D
Neural
" Surrogate " ©
q y - *(t - 1)
.................. ¥
At is fixed
O

u(t=1) = u(t=0) + At - u’(t=0)

How to use this flexibility?

Can train on more finely discretized data

Can adaptively change step size during inference

19

Results: Inference Modifications

1) Solve Trajectory w/ Numerical Solver. At is usually very small.

*ﬂﬂﬂﬁ’ll

~ ‘Y

2) Downsample by 10-1000x to form dataset. Discards 90-99% of data.

Train on high-res data to obtain accurate derivative estimates. Inference on large At for fast time-stepping

20

Results: Inference Modifications

PDE: Adv NS PDE: Adv NS
Metric: Roll. Err. | Roll. Err. | | Metric: Roll. Err. | Roll. Err. |
FNO (FwdEuler) 0.048 0.159 Unet (FwdEuler) 0.032 0.093
FNO (FwdEuler 4+ 2x data) 0.045 0.139 Unet (FwdEuler + 2x data) 0.033 0.091
FNO (FwdEuler + 2x steps) 0.037 0.120 Unet (FwdEuler + 2x steps) 0.019 0.059
FNO (Heun) 0.033 0.100 Unet (Heun) 0.010 0.049

Table 3: Inference Modifiers. Comparing different inference modifications across various models and
PDEs.

o Extra data is more beneficial for complex systems.
o Additional data is very similar to existing data, but is free.

o Extra steps during inference can improve accuracy. Still better to use higher-order schemes.
o Opportunity to use adaptive step sizing with high-order schemes. (Adaptive RK4 is SoA™)

“used in MATLAB’s ode45(): https://www.eng.auburn.edu/~tplacek/courses/3600/ode45berkley.pdf

Limitations: Performance depends on At

Rollout Error vs. At, Advection Rollout Error vs. At, NS
FNO Unet FNO Unet
| 1.0
—e— Fwd Euler —e— Fwd Euler »5 —*— Fwd Euler © === Fwd Euler 1
. —— RK4 . s —— RK4 —— RK4 50 o RK4
T re] e e e I 20 . State Pred +— State Pred ,
1.25
| CFL = 1 CFL =1 I
6 - 6 § | / / § 1.00
S | . o . L] Effect is worsein | i [——
! .¢ . | ./ Higher-order ! v complex systems High ZI; orltller d§Chim ©s
/ Error increases as / schemes mitigate this L / 0.50 eventually diverge
. \ . At increases 0.2 e J ; - /"
W o = v - 7 T
........ e el > Sl free—r— . —
At At At At

e Rollout error is dependent on step size At.
o Complex systems require higher-order integrators and smaller step size.

e Re-introduces discretization constraints to neural surrogates

o Step size can still be much larger than numerically stable At. (i.e., CFL > 1)
o Steady-state problems (Darcy tlow, statics) are incompatible.

What drives this dependence on At?

Forward Euler scheme w/ different estimators, Advection

0.4

—— FNO
—e— Unet Numerical + Model
error accumulates
—e— Qracle
./.
./
(/
Error follows ' _e

numerical oracle

00 02 04

06 08 10 1.2
t (seconds)

Forward Euler scheme w/ different estimators, NS

! 25 —e— FNO /)
/./ /o /./.
" —e— Unet y "
/ﬁ/’ 3}] :/ /‘/
" —e— Qracle / .,./‘
/././ . ‘ ./ ././
o " O L. Effect is more acute /-/ e
Llj in complex systems . T . o
1.0) /./ ./o/
o/. /°/./
./ L
() ./o/.,o/.
|'(J oooooooo s=e—0 ofcfo 0=0—0=0—0—0~0—0=0—0—0~0—0—0—0—0~0—0=0—0-0=0=0=0—0—09
1.6 1.8 2.0 00 375 7.5 11.25 15.0 18.75 225 26.25 30.0 33.75 37.5

t (seconds)

o Even with perfect derivatives, numerical error still accumulates (truncation error)

o In early stages, numerical error drives error accumulation. Larger At exacerbates this.

o In later stages, model error contributes to error propagation + instability

o Majority of performance gains to be made by improving model

23

Why does derivative prediction Work Well?su s

State Prediction Derivative Prediction State Prediction Derivative Prediction

Q 2 | 0.25 < ,‘
o0 YL 3:;;

-0.25

——

.~ O\ o Sy SRS
25 0.50 0.75) .75 <0.50 -0.25 0.00 0.25 0.50 0.75

-0.50 4 : -0.50
0.75 1 /—g — 0.75 ?/2%\\\\\\\\\\\\\
075 -0.50 -025 000 0.

o Plotting rollout loss vs. perturbed, trained weights: 6* + aé + by
o Hypotheses:
o Predicting the change in the state is more informative than the state itselt

o Better stability from only adding a small change At - u’(t) vs. predicting an entirely new
state u(t+1), assuming previous state is accurate.

24

Thank you for listening!

Carnegie

Questions/Comments? Miellon

University

Appendix: Overview

A p A
ﬁ(tn-H’ n+l) Fu An_l ﬁ(tn—lv n—l) ﬁ(tn—H’ n+l)
ﬁ(tn. o 1) ’ (u) o(t’n‘ lal:.ln } l) 1 o (tn f l?ltAln + l)
o (t &) o (t 4) (tn- lay Up ':)
u o(t,., F,(1,) 1 S | S ¥ 6~ F(i,.)
Fﬁ(lln) Ffl(un)
O (tm un) o (tm un) O (tm un)
s e— —_—)
t > t t
(a) State prediction. Mod- (b) Derivative prediction. (c) Derivative prediction (d) Derivative prediction
els are trained to directly Models predict %—lﬂt:tn = with higher order integra- with variable step sizes can
predict u,+1 = Fp(un). Fg(un) to solve iy 1. tors can be more accurate. be more flexible.

Fig. 1: A comparison of state prediction and derivative prediction, where models are either trained to predict
U, 1 Or %—‘; lt—¢,. . During inference, models are given an initial solution u,,, and predict future solutions along
the dashed trajectory. By predicting the temporal derivatives rather than the future solution, derivative
prediction can learn spatial updates while an ODE integrator updates the solution in time, which can improve
accuracy. Furthermore, derivative prediction can use higher-order integrators or variable timesteps, which
further improves its accuracy and flexibility, while being applicable across model architectures and datasets.

26

Appendix: Integration Schemes

u(tp,e1) = ul(t,) + AtFp(u(t,),tr) (Forward Euler)
At At
(tyr) = ult,) 32 Fo(u(ta) tn) — % Fo(utn1), tn 1) (Adams-Bashforth)

U(tpe1) = u(t,) + AtFyp(u(t,),tr)
At
2

u(tpe1) =ul(t,) (Fop(u(t,),tn) + Fo(u(tni1), tna1) (Heun’s Method)

kl = Fg(ll(tn), tn)

kz — Fg(u(tn) At%, tn Azt)
k3 — FG(u(tn) T At%7tn | AQt)
ks = Fo(u(t,) + Atks,t, + At)
At
u(ty,e1) = u(ty,) (k1 + 2ko + 2k3 + ky4) (4th-order Runge-Kutta)

6

Appendix: Kolmogorov Flow

160

80

0

80

Y

0

S0

0

80

0

FNO-state

FNO-RK4

Kolmogorov Flow
Unet-state

Unet-RK4

Reference

S0

160

28

Appendix: Training Modifications

PDE: Adv Heat KS Burgers NS Kolm. Flow
Metric: Roll. Err. | Roll. Err. | Corr. Time T Roll. Err. | Roll. Err. | Corr. Time 1
FNO (State Pred.) 0.498 0.589 139.75 0.437 0.715 51.4
FNO (4x params) 0.826 0.991 147.75 0.276 0.599 67.4
FNO (Pushforward) 0.357 0.486 141 0.397 0.090 53.3
FNO (Refiner) 0.036 0.167 159.75 1.141 0.596 37.5
FNO (RK4) 0.033 0.141 197.25 0.175 0.100 82.3
FNO (RK4+Pushforward) 0.023 0.140 194.25 0.322 0.058 83.8
Unet (State Pred.) 0.044 0.149 153.5 0.666 0.099 39.1
Unet (4x params) 0.036 0.144 145.25 0.222 0.053 52.1
Unet (Pushforward) 0.048 0.149 145 0.746 0.078 36.0
Unet (Refiner) 0.082 0.176 145.5 0.217 0.180 51.1
Unet (RK4) 0.010 0.139 174.5 0.264 0.049 88.9
Unet (RK4+Pushforward) 0.010 0.139 177 0.264 0.034 90.6

Table 2: Training Modifiers. Comparing different training modifications on various PDEs, models
and frameworks.

Appendix: Noised Trajectories

u + N(0.0.01) a4+ N(0,0.01))

64 64 |

64 p

48 48 48

32 32 32

16 16 16

v 0 0

0 16 32 48 64 0 16 32 48 64 0 16 32 I8 64 0 16 32 I8 64
Fig. 6: Noised Trajectories. Snapshots of the 2D Navier-Stokes equation, along with their temporal

derivatives. Adding noise to a trajectory creates a similar sample, however this effect is noticeable when
taking its temporal derivative.

Appendix: Next-Step Error

Model Adv Heat KS Burgers NS Kolm. Flow
FNO-State (Next-Step Error) 0.0048 0.0053 0.0012 0.0382 0.0016 0.0214
FNO-Derivative (Next-Step Error) 0.0004 0.0020 0.0003 0.0045 0.0005 0.0038
FNO-Derivative (Derivative Error) 0.0204 0.2665 0.0047 0.1104 0.0234 0.0522
Unet-State (Next-Step Error) 0.0041 0.0044 0.0013 0.0291 0.0018 0.0254
Unet-Derivative (Next-Step Error) 0.0003 0.0018 0.0008 0.0068 0.0008 0.0094
Unet-Derivative (Derivative Error) 0.0101 0.3065 0.0142 0.1700 0.0402 0.1256

Table 4: Next-Step Error. Results on validation next-step error across different PDEs, models, and
training /inference frameworks. Derivative error is calculated with an RK4 integrator. Next-step error for
state-prediction models is given by: L(u(t,+1), Fo(u(t,))), while for derivative-prediction models both
the derivative error: £(%2|;—, , Fp(u(t,))) and next-step error: L(u(tn+1), [Fo(u(t,))) are given.

31

Appendix: Timing Experiments

Model: FNO Unet Solver
Setup: State Adams Heun RK4 | State Adams Heun RK4 | 64x64 32x32 16x16

Runtime (s) 0.163 0.158 0.301 0.622 | 0.399 0.359 0.691 1.379 | 3.508 2.692 2.549
Rollout Error 0.715 0.100 0.100 0.100 | 0.099 0.048 0.049 0.049 | 0.000 0.096 0.285

Table 5: Computational Cost. Comparison of computational cost of different models and a
baseline solver on the Navier-Stokes equations. Runtimes are reported in seconds (s) for a full
rollout, averaged for each sample in the validation set. Rollout errors are given as relative L2 error.

32

